Biopatología de la hipertensión arterial pulmonar idiopática
Edgar G Bautista Bautista, Luis Efrén Santos, José Luis Hernández
2006, Suplemento 4
2006; 65 (S4)
RESUMEN
El conocimiento bio-patológico actual de la hipertensión arterial pulmonar idiopática (HAPI), se sustenta en los hallazgos patológicos de la enfermedad descritos hace más de 30 años, consistentes en importantes alteraciones morfológicas y funcionales de células endoteliales, células del músculo liso vascular pulmonar (CMLVP) y de la propia adventicia. El concepto fisiopatológico de la HAPI centrado en vasoconstricción ha cedido su lugar al de un endotelio vascular entendido como un complejo formador de una innumerable cantidad de sustancias con propiedades vasoactivas, antitrombóticas y antiproliferativas, cuyo desequilibrio favorece la aparición de vasoconstricción, trombosis y proliferación celular anormal. Es en base a estos conceptos que en la actualidad se considera a la HAPI como una enfermedad con carácter angioproliferativo.
Heath D, Edwards JE. The pathology of hypertensive pulmonary vascular disease. Circulation 1958; 18: 533-537.
Yi ES, Kim H, Ahn H, Strother J, Morris T, Hansen LA, et al. Am J Respir Crit Care Med 2000; 162(4 pt 1): 1577-1586.
Anderson EG, Simon G, Reid LM. Primary and thromboembolic pulmonary H: a quantitative pathologic study. J Pathol 1972; 10: 273-293.
Eddahibi S, Morrell N, d’Ortho M-P, Naeije R, Adnot D. Pathobiology of pulmonary arterial hypertension. Eur RespirJ 2002; 20: 1559-1572.
Euler USv, Liljsjestrand G. Observations of the pulmonary arterial blood pressure on the cat. Acta Physiol Scand 1946; 12: 301-320.
Michelakis ED, Weir K. Smooth muscle cells and ion channels in clinics in chest medicine; Pulmonary hypertension. Rich S, McLaughlin V,. Smiley I. ISSN 0272-4231. WB Saunders 2001: 405-432.
Tuder RM, Cool CD, Yeager M, Taraseviciene-Stewart, Bull T, Voelkel NF. The pathobiology of pulmonary hypertension; endothelium in clinics in chest medicine; pulmonary hypertension. Rich S, McLaughlin V, Smiley I. ISSN 0272-4231. WB Saunders 2001; 22: 405-418.
Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable susbtance that inhibits platelet aggregation. Nature 1976; 263(5579): 663-665.
Tuder RM, Cool CD, Geraci MW, et al. Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am J Respir Crit Care Med 1999; 159: 1925-1932.
Geraci MW, Gao B, Sheperd DC, et al. Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension. J Clin Invest 1999; 103: 1509-1515.
Clapp LH, Finney P, Turcato S, Tran S, Rubin LJ, Tinker A. Differential effects of stable prostacyclin analogues on smooth muscle proliferation and cyclic AMP generation in human pulmonary artery. Am J Respir Cell Mol Biol 2002; 26: 194-201.
Hyman AL, Chapnick BM, Kadowitz PJ, et al. Unusual pulmonary vasodilator activity of 13,14 dehydroprostacyclin methylester:comparison with endoperoxides and other prostanoids. Proc Natl Acad Sci USA 1977; 74: 5711-5715.
Christman BW, McPherson CD, Newman JH, et al. An imbalance between the excretion of thromboxane and prostacyclin metabolites in pulmonary hypertension. N Engl J Med 1992; 327: 70-5.
Moncada S, Palmer RMJ, Higgs EA. Biosynthesis of nitric oxide from L-arginine: a pathway for the regulation of cell function and communication. Biochem Pharmacol 1989; 38: 1709-1715.
Perrella MA, Edell ES, Krowka MJ, Cortese DA, Burnett JC Jr. Endothelium-derived relaxing factor in pulmonary and renal circulations during hypoxia. Am J Physiol 1992; 263: R45-R50.
Giaid A, Saleh D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N Engl J Med 1995; 33: 14-221.
Giaid A, Yanagisawa M, Langleben D, et al. Expression of endothelin-1 in the lungs of patients with pulmonary hypertension. N Engl J Med 1993; 328: 1732-1739.
Stewart DJ, Levy RD, Cernacek P, Langleben D. Increased plasma endothelin-1 in pulmonary hypertension: marker or mediator of disease. Ann Intern Med 1991; 114: 464-469.
Eddahibi S, Hanoun N, Lanfumey L, Lesch KP, Raffestin B, Hamon M, Adnot S. Attenuated hypoxic pulmonary hypertension in mice lacking the 5-hydroxytryptamine transporter gene. J Clin Invest 2000; 105: 1555-1562.
Eddahibi S, Humbert M, Fadel E, Raffestin B, Darmon M, Capron F, Simonneau, Dartevelle P, Hamon M, Adnot S. Serotonin transport overexpression is responsible for pulmonary artery smooth muscle hyperplasia in primary pulmonary hypertension. J Clin Invest 2001; 108: 1141-1150.
Long, Maclean MR, Jeffery TK, Morecroft I, Yang X, Rudarakanchana N, Southwood M, James V, Trembath RC, Morrell NW. Serotonin increases susceptibility to pulmonary hypertension in BMPR2 deficient mice. Circ Res 2006; 98: 818-827.
Yuan XJ, Wang J, Juhaszova M, Gaine SP, Rubin LJ. Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 1998; 351: 726-727.
Tuder, Groves B, Badesch DB, Voelkel NF, Tuder RM. Pathogenesis and evolution of plexiform lesions of pulmonary hypertension. Am J Pathol 1994; 144: 275-285.
Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301-314.
Bazan JF, Bacon KB, Hardiman G, et al. A new class of membrane bound chemokine with a CX3C motif. Nature 1997; 385: 640-644.
Foussat A, Coulomb-L’Hermine A, Goslin J, et al. Fractalkine receptor expression by T lymphocyte subpopulations and in vivo production of fractaline in human. Eur J Inmunol 2000; 30: 87-97.
Moatti D, Faure S, Fumaron F, et al. Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 2001; 97: 1925-1928.
Balabanian K, Foussat A, Drfmuller P, et al. CX(3)C Chemokine fractalkine in pulmonary arterial hypertension. Am J Respir Crit Care Med 2002; 165: 1419-1425.
Dorfmuller P, Zarka V, Durand-Gasselin I, et al. Chemokine RANTES in severe pulmonary arterial hypertension. Am J Respir Crit Care med 2002; 165: 534-539.
Song E, Zou H, Yao Y, et al. Early application of Met-RANTES ameliorates chronic allograft nephropathy. Kidney Int 2002; 61: 676-685.
Humbert M, Monti G, Brenot F, et al. Icreased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 1995; 151: 1628-1631.
Du L, Sullivan CC, Chu D, Cho AJ, Kido M, Wolf PL, Yuan JX, Deutsch R, Jamieson SW, Thistlethwaite PA. Signaling molecules in nonfamilial pulmonary hypertension N Eng J Med 2003; 348: 500-509.
Chaouat A, Weitzenblum E, Higenbottam T. The role of trombosis in severe pulmonary hypertension. Eur Respir J 1996; 9: 356.
Abenhaim L, Moride Y, Brenot F, Rich S, Benichou J, Kurz X, Higenbottam T, Oakley C, Wouters E, Aubier M, Simonneau G, Beagud B. Appetite-supressant drugs and the risk of primary pulmonary hypertension. International Primary Pulmonary Hypertension Study Group. N Engl J Med 1996; 335: 609-616.
Hervé P, Humbert M, Sitbon O, et al. Pathobiology of pulmonary hypertension: the role of platelets and thrombosis. Clin Chest Med 2001; 22: 451-8.
Rabinovitch M. It all begins with EVE ( endogenous vascular elastase). Isr J Med Sci 1996; 32: 803-8.
Molossi S, Clausell N, Sett S, et al. ICAM-1 and VCAM expression in accelerated cardiac allograft arteriopathy and myocardial rejection are influenced differently by cyclosporine A and tumour necrosis factor blockade. J Pathol 1995; 176: 175-182.
Humbert M, Morrell N, Archer SL, Stenmark KR, et al. Cellular and molecular pathobiology of pulmonary hypertension. J Am Coll Cardiol 2004; 43: 13S-24S.
Loscalzo J. Genetic clues to the cause of primary pulmonary hypertension (Editorial). N Engl J Med 2001; 345: 5.
Newman JH, Trembath RC, Morse JA, et al. Genetic basis of pulmonary arterial hypertension. Current undersatnding and future directions. J Am Coll Cardiol 2004; 43: 33S-39S.
Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, Roth M, Sydkov A, Lai YJ, Weissmann, Seeger W, Grimminger F. Reversal of experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 2005; 115: 2811-2821.
Tarasevicience-Stewart T, Kasahara Y, Alger L, et al. Inhibition of the VEGF receptor-2 combined with chronic hypoxia causes cell death dependent pulmonary hypertension. FASEB J 2001; 15: 427-38.