Driving pressure: Main objective for alveolar protection
Pérez-Nieto, Orlando Rubén , Deloya-Tomás, Ernesto , Lomelí-Terán, José Manuel , Pozos-Cortés, Karen Pamela , Monares-Zepeda, Enrique , Poblano-Morales, Manuel Nicolás
2018, Number 3
2018; 77 (3)
ABSTRACT
Background: Acute respiratory distress syndrome (ARDS) is a serious pathology, common in the intensive care unit, driving pressure (DP) is a variable of the respiratory mechanics associated with mortality, which depends on the relationship between lung compliance (Cest), positive end-expiratory pressure (PEEP) and inspired tidal volume (Vt). Development: PD has been shown to be the most relevant lung protection goal in recent years, whose control has an impact on the survival of patients with ARDS, it is easy to calculate and can be measured routinely in patients who do not generate inspiratory effort, with the formulas: PEEP-Plateau pressure or Vt/CRS (respiratory system compliance). Discussion: PD is a measure of alveolar protection reported in 1998 and is directly related to mortality in patients with ARDS, DP integrates three variables: Vt, PEEP and plateau pressure, which in isolation have been shown to be directly related to the prognosis of this pathology. Conclusion: The control of DP is the primary objective for alveolar protection in patients with ARDS.
Bernard GR, Artigas A, Brigham KL, et al. The American–European Consensus Conference on ARDS: definitions, mechanism, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 1994;149(3 Pt 1):818-824.
Musch G, Venegas JG, Bellani G, et al. Regional gas exchange and cellular metabolic activity in ventilator- induced lung injury. Anesthesiology 2007;106 (4):723-735.
Temblay LN, Miatto D, Hamid Q, Govindarajan A, Slutsky AS. Injurious ventilation induces widespread pulmonary epithelial expression or tumor necrosis factor-alpha and interleukin-6 messenger RNA. Critical Care Med 2002;30(8):1693-1700.
Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, Wheeler A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000;342(18):1301-1308.
Arancibia HF, Soto FR. Daño pulmonar inducido por la ventilación mecánica. Rev Chil Med Inten 2010;25(4):205-210.
Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998:338(6);347-354.
Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372(8):747-755. doi: 10.1056/NEJMsa1410639.
Loring SH, Malhotra A. Driving pressure and respiratory mechanics in ARDS. N Engl J Med 2015;372(8):776-777. doi: 10.1056/NEJMe1414218.
Bellani G, Laffey JG, Pham T, et al.; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in Intensive Care Units in 50 countries. JAMA 2016;315(8):788-800. doi: 10.1001/jama.2016.0291.
Guérin C, Papazian L, Reignier J, Ayzac L, Loundou A, Forel JM; Investigators of the Acurasys and Proseva trials. Effect of driving pressure on mortality in ARDS patients during lung protective mechanical ventilation in two randomized controlled trials. Crit Care 2016;20(1):384.
Chiumello D, Carlesso E, Brioni M, Cressoni M. Airway driving pressure and lung stress in ARDS patients. Crit Care 2016;20:276. doi: 10.1186/s13054-016-1446-7.
Villar J, Martín-Rodríguez C, Domínguez-Berrot AM, et al. A quantile analysis of plateau and driving pressures: effects on mortality in patients with acute respiratory distress syndrome receiving lung-protective ventilation. Crit Care Med 2017;45(5):843-850. doi: 10.1097/CCM.0000000000002330.
Borges JB, Hedenstierna G, Larsson A, Suarez-Sipmann F. Altering the mechanical scenario to decrease the driving pressure. Crit Care 2015;19:342. doi: 10.1186/s13054-015-1063-x.